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Abstract

Motivation: Knowledge of protein-binding residues (PBRs) improves our understanding of protein—protein interac-
tions, contributes to the prediction of protein functions and facilitates protein—protein docking calculations. While
many sequence-based predictors of PBRs were published, they offer modest levels of predictive performance and
most of them cross-predict residues that interact with other partners. One unexplored option to improve the predict-
ive quality is to design consensus predictors that combine results produced by multiple methods.

Results: We empirically investigate predictive performance of a representative set of nine predictors of PBRs. We re-
port substantial differences in predictive quality when these methods are used to predict individual proteins, which
contrast with the dataset-level benchmarks that are currently used to assess and compare these methods. Our ana-
lysis provides new insights for the cross-prediction concern, dissects complementarity between predictors and dem-
onstrates that predictive performance of the top methods depends on unique characteristics of the input protein
sequence. Using these insights, we developed PROBselect, first-of-its-kind consensus predictor of PBRs. Our design
is based on the dynamic predictor selection at the protein level, where the selection relies on regression-based
models that accurately estimate predictive performance of selected predictors directly from the sequence. Empirical
assessment using a low-similarity test dataset shows that PROBselect provides significantly improved predictive
quality when compared with the current predictors and conventional consensuses that combine residue-level pre-
dictions. Moreover, PROBselect informs the users about the expected predictive quality for the prediction generated
from a given input protein.

Availability and implementation: PROBselect is available at http:/bioinformatics.csu.edu.cn/PROBselect/home/
index.

Contact: lkurgan@vcu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

2012; Zhang et al., 2019). Analysis of PPI sites provides molecular-

1 Introduction
level insights into mechanisms of human diseases (Kuzmanov and

Protein—protein interactions (PPIs) drive many cellular functions
including signaling, catalysis, metabolism and regulation of the cell
cycle (Braun and Gingras, 2012; Figeys, 2002). Knowledge of PPIs
contributes to the development of PPI networks (De Las Rivas and
Fontanillo, 2012), which in turn empowers prediction of protein
function (Ahmed ef al., 2011; Hou, 2017; Orii and Ganapathiraju,

Emili, 2013; Nibbe et al., 2011; Zinzalla and Thurston, 2009).
These sites are nowadays targeted for the development of therapeu-
tics (Johnson and Karanicolas, 2013; Petta ez al., 2016; Sperandio,
2012). Elucidation of novel PPIs is supported by computational pre-
dictors (Aumentado-Armstrong et al., 2015; Esmaielbeiki ez al.,
2016; Maheshwari and Brylinski, 2015; Xue et al., 2015; Zhang
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and Kurgan, 2018). We concentrate on the methods that perform
predictions directly from protein sequences, which are readily avail-
able for thousands of sequences genomes. The sequence-based meth-
ods are categorized into two groups depending on their output:
protein-level predictors that predict whether proteins interact with
each other versus residue-level methods that predict protein-binding
residues (PBRs) (Zhang and Kurgan, 2018).

We focus on the sequence-based predictors of PBRs that argu-
ably provide more detailed information than the other class of pre-
dictors. So far, 18 of these predictors were developed. They include
(in chronological order): ISIS (Ofran and Rost, 2007), SPPIDER
(Porollo and Meller, 2006), predictors by Du et al. (2009) and Chen
and Jeong (2009), PSIVER (Murakami and Mizuguchi, 2010), pre-
dictor by Chen and Li (2010), HomPPI (Xue ef al., 2011), LORIS
(Dhole et al., 2014), SPRINGS (Singh et al., 2014), methods by
Wang et al. (2014) and Geng et al. (2015), CRF-PPI (Wei et al.,
2015), PPIS (Liu et al., 2016), iPPBS-Opt (Jia et al., 2016), SPRINT
(Taherzadeh et al., 2016), SSWRF (Wei et al., 2016), SCRIBER
(Zhang and Kurgan, 2019) and DeepPPISP (Zeng et al., 2020).
These predictors find various practical applications in the context of
functional characterization of proteins (Banadyga et al., 2017;
Burgos et al., 2015; Mahboobi et al, 2015; Mahita and
Sowdhamini, 2017; Wiech et al., 2015; Yang et al., 2017,
Yoshimaru et al., 2017), estimation of binding affinities (Lu et al.,
2018) and development of personalized medicine platforms (Hecht
et al., 2015). They utilize a diverse assortment of predictive models
that rely on a wide range of algorithms (sequence alignment, neural
networks, support vector machines, random forest, etc.) and predict-
ive inputs [sequence, evolutionary conservation (ECO), putative
solvent accessibility, etc.] (Zhang and Kurgan, 2018). While recent
studies reveal that this area has progressed over the last decade
(Zhang and Kurgan, 2018, 2019), the predictive performance
remains modest and majority of methods struggle with cross-
prediction (Zhang and Kurgan, 2018). The latter means that they
often predict residues that interact with other ligands (e.g. DNA and
RNA) as PBRs. In spite of the availability of a large and diverse
population of predictors and the modest predictive quality, the de-
velopment of consensus-based approaches was not yet tackled in
this area. The consensus methods use a collection of results pro-
duced by base predictors to produce new prediction that offers bet-
ter predictive performance relative to the performance of the base
methods. This approach was successfully deployed in several related
areas (Kulshreshtha et al., 2016; Peng and Kurgan, 2012; Puton
etal.,2012; Yan et al., 2016). For instance, there are numerous con-
sensus methods for the sequence-based prediction of the intrinsically
disordered residues (Meng et al., 2017a, b), and they are among the
most accurate in this area (Fan and Kurgan, 2014; Monastyrskyy
et al.,2014; Necci et al., 2017).

We address two objectives. First, we perform a comprehensive
comparative analysis of predictive performance for a set of nine rep-
resentative predictors of PBRs. In contrast to the prior studies where
predictors were assessed using datasets-level results, we are the first
to address evaluation at the arguably more practical protein-level,
i.e. user typically apply these tools to predict individual proteins.
Combination of dataset- and protein-level analyses allows us to for-
mulate original and interesting observations concerning overall pre-
dictive performance, severity of cross-predictions, complementarity
between predictors and factors that determine predictive quality.
Second, we utilize these insights to develop an innovative consensus
architecture that delivers improved predictive performance. Our de-
sign significantly improves over the base methods and estimates the
expected predictive performance of the resulting protein-level
prediction.

2 Materials and methods

2.1 Selection of a representative set of current

predictors
Similar to the recent comparative review (Zhang and Kurgan,
2018), the criteria used to select representative predictors are: (i)

availability (at minimum either webserver or source code is pro-
vided); (ii) scalability (prediction for an average size protein chain
must complete inside 30 min); and (iii) outputs must include both
binary predictions (each residue is categorized as PBR versus non-
PBR) and numeric propensity for protein binding. The propensities
provide more granular information that allows calibration of the
amount of predicted PBRs and are required to estimate commonly
used predictive performance measures. Nine methods satisfy these
requirements: SPPIDER (Porollo and Meller, 2006), PSIVER
(Murakami and Mizuguchi, 2010), LORIS (Dhole et al., 2014),
SPRINGS (Singh et al., 2014), CRF-PPI (Wei et al., 2015), SPRINT
(Taherzadeh et al., 2016), SSWRF (Wei et al., 2016), SCRIBER
(Zhang and Kurgan, 2019) and DeepPPISP (Zeng et al., 2020). They
are summarized in Supplementary Table S1. Importantly, this list
includes all recently published tools.

2.2 Benchmark dataset

We use the dataset that was published in Zhang and Kurgan (2019)
and which was collected using the procedure from Zhang and Kurgan
(2018). In contrast to prior datasets in this area, this dataset annotates
a broad range of protein—ligand interactions (allowing us to compre-
hensively evaluate cross-predictions) and provides a more complete
annotation of native-binding residues. The latter is accomplished by
combining annotations collected across multiple complexes that share
the same protein (Zhang and Kurgan, 2018). The source data were
collected from the BioLip database (Yang et al., 2012) that annotates
PBRs based on high-resolution structures of protein—protein com-
plexes from PDB. Importantly, proteins in this dataset share low,
<25%, similarity with the proteins in the training datasets of the
selected nine representative predictors. This was done by clustering
the set of the BioLip-annotated proteins combined with the training
proteins collected from the nine studies using Blastclust at 25% se-
quence similarity (Altschul ez al., 1997), and selecting proteins from
the clusters that do not include the training proteins. This provides
for a fair comparison (no method has an advantage of using similar
proteins in their training process) and ensures that evaluation focuses
on the proteins that cannot be accurately predicted with sequence
alignment to the training proteins. The dataset includes 448 proteins
with 101 754 residues that include 336 proteins that have PBRs and
112 that do not have PBRs but which interact with other ligands
(DNA, RNA and a range of small molecules); the latter is crucial to
assess the cross-predictions. We divide these proteins at random into
two equal-sized subsets, TRAINING and TEST datasets, for the pur-
pose of designing and testing the consensus predictor. Supplementary
Table S2 summarizes the contents of these datasets and quantifies the
amount of protein-, RNA-, DNA- and small ligand-binding residues.
The annotated datasets are available at http:/bioinformatics.csu.edu.
cn/PROBselect/home/index.

2.3 Evaluation setup

The nine methods output binary predictions (PBR versus non-PBR)
and real-valued propensity for protein binding for each residue in
the input protein sequence. We adapt the evaluation criteria that
were applied in the recent comparative review (Zhang and Kurgan,
2018) to assess predictive performance. We assess the binary predic-
tions using

Accuracy = —TP +TN ,
TP + FN + TN + FP’
Sensitivity — TP
ensitivity = m7
.. FP
False positive rate (FPR) = TN T EP and

FPpna + FPra + FPjigand
Npna + NrNa + Niigand

False cross — positive rate (FCPR) =

where true positives (TP) and true negatives (TN) are the correctly
predicted PBRs and non-PBRs, respectively; false positives (FP) are
non-PBRs incorrectly predicted as PBRs; false negatives (FN) are
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PBRs incorrectly predicted as non-PBRs; FPpna, FPrna and FPjigang
are the residues that interact with DNA, RNA and small ligands, re-
spectively, that are incorrectly predicted as PBRs; and Npna, Nrna
and Njjgang denote the number of residues that interact with DNA,
RNA and small ligands, respectively. FCPR, which was introduced
in Zhang and Kurgan (2018), is the fraction of the native DNA-
binding, RNA-binding and small ligand-binding residues that are
cross-predicted as PBRs.

We evaluate the putative propensities with the area under re-
ceiver operating characteristic curve (AUC). The curve plots TPR
(true positive rate) = TP/(TP + FN) against FPR (false positive rate)
= FP/(FP + TN) that are computed by binarizing the propensities
using thresholds equal to all unique values of the propensities.

2.4 Estimation of predictive quality from protein

sequence

As part of the comparative evaluation, we show that predictive per-
formance of the considered methods varies widely between pro-
teins, and that different methods perform well for different protein
sets. We also found that the predictive quality of specific methods
can be linked to biophysical and structural characteristics of pro-
teins that can be computed directly from the sequences. In other
words, specific predictors perform particularly well (poorly) for
proteins that have certain sequence-derived biophysical and struc-
tural features. Thus, we hypothesize that we can accurately model
the relation between these features and the predictive performance
measured with the AUC for a particular predictor. We designed
and trained models for four predictors that have high predictive
performance (LORIS, SPRINGS, CRFPPI and SSWRF). We were
unable to generate accurate models for the remaining five methods
since their predictive quality is relatively low and thus cannot be re-
liably predicted.

Prediction of the AUC values from the sequence is three-step pro-
cess. First, the input protein sequences are used to generate sequence
profile that describes relevant physiochemical and structural features
of the constituent residues. Second, the profiles are converted into
vectors of numeric features that aggregate and combine the physio-
chemical and structural information at the protein level. Third, the
feature vectors are processed by the regression models that predict
the AUC values. The following subsections detail these three steps.

2.4.1 Sequence profile

The physiochemical and structural features that were found in the
literature to be relevant to protein—ligand interactions include
(Zhang et al., 2019): residue-level propensity for binding (some
amino acids are more prone to interact with specific partner types),
solvent accessibility (PBRs are located on protein surface), ECO

(PBRs tend to be conserved in the sequence), secondary structure,
hydrophobicity, polarity (polar residues are more likely to interact
with proteins and DNA) and charge (charged residues are more like-
ly to interact with nucleic acids). We use these characteristics to de-
velop the sequence profile. The relative amino acid propensities
(RAAP) for interactions with proteins, DNA and RNA were col-
lected from Zhang et al. (2019). The relative solvent accessibility
(RSA) was predicted from sequence using the accurate and quick
ASAquick method (Faraggi et al., 2014). The ECO values were gen-
erated from the sequence with the fast and sensitive HHblits
(Remmert et al., 2012). The secondary structure was predicted from
the sequence using the fast version of the popular PSI-PRED method
which does not use the multiple sequence alignments (Buchan et al.,
2013). We also predicted the disordered protein-binding residues
with the with computationally efficient and popular ANCHOR tool
(Dosztanyi et al., 2009). Finally, the physiochemical properties
(hydrophobicity, polarity, polarizability and charge) were quantified
using the AAindex database (Kawashima et al., 2007). The compu-
tation of the profile is fast as we rely on the computationally effi-
cient algorithms.

2.4.2 Conversion of the profile into protein-level feature vector

The sequence and sequence profile, where each amino acid is
described by the above-mentioned physiochemical and structural
characteristics, are converted into a vector of protein-level numeric
features. This conversion is necessary to train regression models.
The vector includes the composition of the 20 amino acid types; se-
quence length; the average over the residues in the sequence for the
putative RSA, ECO, polarity, polarizability, charge, hydrophobicity,
putative propensity for disordered protein binding, and RAAP for
interactions with proteins, DNA and RNA; fraction of putative sur-
face residues, conserved residues, positively and negatively charged
residues, putative disordered protein-binding residues, and putative
coil, strand and helix residues. We also designed features that com-
bine multiple characteristics including RAAP for protein/DNA/RNA
interactions for the putative surface residues; physiochemical prop-
erties and ECO of the putative surface residues; RAAP for protein/
DNA/RNA interactions for the conserved residues; and RAAP for
protein/DNA/RNA interactions for the putative surface residues
that are conserved. Supplementary Table S3 details calculation of
the corresponding set of 65 features.

An alternative to this feature-based approach is to process the
profile using a deep neutral network, as it was recently done to pre-
dict PBRs (Zeng et al., 2020). However, this approach has underper-
formed when compared with other methods that rely on the
conversion of the input profile into feature vectors (Table 1; these
results are discussed in Section 3.1).

Table 1. Comparison of the predictive performance of nine representative predictors of PBRs on the benchmark dataset

Predictor AUC Sensitivity

FPR (sensitivity to FPR rate) FCPR (sensitivity to FCPR rate)

Dataset-level Median per-protein Dataset-level Median per-protein Dataset-level Median per-protein Dataset-level Median per-protein

CRFPPI 0.683 0.706 0.271 0.261°
SSWRF 0.693 0.701= 0.311 0.295"
LORIS 0.657 0.671" 0.266 0.260"
SPRINGS 0.626 0.646" 0.234 0.219"
SCRIBER 0.717 0.635" 0.311 0.192"
SPRINT 0.573 0.608" 0.187 0.156"
PSIVER 0.578 0.606" 0.192 0.157
DeepPPISP  0.642 0.599" 0.477 0.500

SPPIDER 0.513 0.486" 0.198 0.125"

0.113[2.4]  0.097=[2.7]  0.204[1.3] 0.182" [1.4]
0.113[2.8]  0.105=[2.8]  0.210[1.5] 0.191" [1.5]
0.114[2.3]  0.109=[2.4]  0.192[1.4] 0.167" [1.6]
0.120[2.0]  0.103=[2.1]  0.235[1.0] 0.2127 [1.0]
0.093 [3.3] 0.046 [4.2] 0.100 [3.1] 0.000 [inf]
0.128[1.5]  0.110=[1.4]  0.379[0.5] 0.409" [0.4]
0.128[1.5]  0.108=[1.5]  0.251[0.8] 0.200" [0.8]
0.286 [1.7] 0.360" [1.4] 0.422[1.1] 0.500" [1.0]
0.132[1.5]  0.102=[1.2]  0.323[0.6] 0.293" [0.4]

Note: The methods are sorted by their median per-protein AUC values in the descending order. Methods indicated in bold font provide the best value of a given

measure of predictive performance. We report medians of the per-protein values and assess significance of the differences between the per-protein values of the

best method and each of the other methods.

*Statistically significant differences (P-value <0.001), while ‘=" denotes differences that are not significant (P-value > 0.001). We use paired #-test (for normal

data) or Wilcoxon test (otherwise) and we assess normality with the Kolmogorov—Smirnov test.
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2.4.3 Prediction by regression models

The features are used as an input to a regression model that predicts
the predictive performance (quantified with AUC) for a given pre-
dictor of PBRs. We derive and optimize these models using two
popular algorithms, linear regression (LR) and support vector re-
gression (SVR). The optimization was done exclusively on the
TRAINING dataset using 3-fold cross-validation with the aim to
maximize quality of the AUC predictions. The predictive quality
was quantified with three popular measures: Pearson’s correlation
coefficient (PCC), mean absolute error (MAE) and root mean
squared error (RMSE) between the predicted and the actual AUC
values.

The optimization includes feature selection and parametrization
of the regression algorithms. The feature selection aims to remove
features that lack predictive power and to reduce redundancy, i.e.
remove mutually correlated features. This is crucial for the LR algo-
rithm that is sensitive to collinearity between the input features. We
empirically compare two feature selection methods: model-specific
approach and a wrapper-based selection. The first method relies on
the popular lasso method that embeds feature selection into opti-
mization of the LR model (Tibshirani, 1996). We parametrize the
number of regularization coefficients in the lasso method by consid-
ering alpha = {1, 0.9, ..., 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005,
0.0001, 0.00005, 0.00001, 0.000005, 0.000001}. The second
method is the wrapper-based feature selection (Kohavi and John,
1997) that was recently used in several related studies (Hu et al.,
2019; Meng and Kurgan, 2018; Yan and Kurgan, 2017; Zhang and
Kurgan, 2019). This approach selects feature sets that secure highest
predictive quality when used with the corresponding predictive
model. First, we rank features by their predictive performance when
they are used to implement univariate LR or SVR models. Second,
starting with the top-ranked (the most predictive) feature we incre-
mentally add to the next-ranked feature to the set of selected fea-
tures if this generates improvements in the predictive performance,
i.e. the expanded feature set secures better performance than the set
before this his feature was added; otherwise the next-ranked feature
is skipped. We scan the sorted feature set once and we consider two
ways to quantify predictive performance, using PCC and MAE val-
ues. Moreover, we perform grid search to parametrize the SVR
model; we use the popular RBF kernel and we consider y = {0.1,
0.2, ..., 1}, and coefficient C=2' where i = {-5, -4, ..., 0,1, ..,
5}. In total, we consider four scenarios for LR (lasso and wrapper
selection optimized to maximize PCC and to minimize MAE), four
scenarios for SVR (wrapper selection and use of the complete feature
set when maximizing PCC and minimizing MAE), and we separately
optimize these models for each of the considered four predictors
of PBRs: LORIS, SPRINGS, CRFPPI and SSWREF, as well as the
consensus predictor PROBselect. The results are summarized in
Supplementary Table S4. We conclude that the best results, as
judged on the TRAINING dataset, are obtained with the SVR model
that applies the complete feature set and which is parametrized to
maximize PCC. This model secures the highest PCC for each of the
five predictors combined with low MAE and RMSE values. The
average (over the five predictors) PCC and MAE of this model are
0.44 and 0.083, respectively, compared with the second best option
(SVR optimized to minimize MAE) that secures lower average PCC
= 0.41 and slightly better average MAE = 0.081, and the best LR-
based configuration that offers PCC = 0.39 and MAE = 0.084.
Consequently, we apply the best-performing SVR models to imple-
ment the consensus predictor.

2.5 Design of the consensus predictor of PBRs

A traditional consensus design in related areas relies on combining
the residue-level predictions generated by multiple predictors (Fan
and Kurgan, 2014; Kulshreshtha ez al., 2016; Peng and Kurgan,
2012; Puton et al., 2012; Yan et al., 2016). In other words, the pre-
dictions generated by multiple methods are combined together for
each amino acid in the input protein sequence. We propose an in-
novative solution that draws from the dynamic classifier selection
model (Cruz et al., 2018). In this model, one of the base predictors
is selected on the fly for each new sample that is predicted. This

works well if the selected predictor provides better results for this
sample compared with the other input predictors. The dynamic clas-
sifier selection model was recently shown to improve over several
other alternatives, including voting and boosting (Britto ez al., 2014;
Cruz et al., 2015; Woloszynski and Kurzynski, 2011).

We perform the ‘dynamic’ selection of the predictor that pro-
vides favorable predictive performance for at the protein level (i.e.
our sample is the whole protein). The selection is implemented using
the AUC values predicted by the SVR models, i.e. we select the pre-
dictor that secures the highest predicted AUC for a given protein se-
quence. This design takes advantage of two observations that we
derived based on the protein-level assessment of the nine predictors
of PBRs. First, two predictors, SSWRF and CRFPPI, secure the best
and statistically significantly better levels of protein-level predictive
performance when compared with the other seven predictors.
Second, SCRIBER is the only method that accurately identifies pro-
teins that do not have PBRs. More specifically, SCRIBER does not
cross-predict PBRs and its FCPR value is statistically significantly
better than FCPRs of the other eight predictors. Correspondingly,
our consensus design, named PROBselect, uses three steps to make
prediction for a given protein sequence (Fig. 1):

1. Use SVR models to predict AUC of SSWRF and CRFPPI.
Generate predictions of PBRs using the SCRIBER method.

3. Select the predictor for the input protein as follows: use the pre-
diction by SCRIBER if SCRIBER does not predict PBRs; other-
wise use one of the other two methods that has higher predicted
AUC value.

The determination whether SCRIBER predicts PBRs relies on its
published false positive rate of 0.015 for the proteins that do not
interact with other proteins (Zhang and Kurgan, 2019). In other
words, if the fraction of the PBRs predicted by SCRIBER <0.015
then we assume that the input proteins does not bind other proteins
(the PBR predictions are spurious). A unique benefit of our design,
in contrast to the traditional residue-level consensus, is that we pro-
vide the estimate of the expected level of predictive performance
(the SVR-predicted AUC value) besides providing the (dynamically
selected) consensus prediction. This additional output informs the
end users about reliability of the associated prediction. Importantly,
our empirical tests (Section 3) reveal that this novel type of consen-
sus produces higher predictive performance than its base predictors
and traditional consensuses, and that the estimates of the AUC val-
ues that are produced by SVR models are relatively accurate and can
be used to identify well-predicted proteins.

3 Results

3.1 Comparative analysis of predictive performance

We assess predictive performance of the nine representative predic-
tors of PBRs on the benchmark dataset with 448 proteins. The data-
set shares low sequence similarity with the training data used to
develop these tools and includes a mixture of proteins that have
PBRs and proteins that do not have PBRs but which interact with
other ligands (nucleic acids and small molecules). This allows for a

Input sequence
{PSI-PRED i ANC

Sequence profile |

]

i | SVR predictor SVR predictor
LRERCER) |of SSWRF's AUCl of CRFPPI's AUC
DTECIC_E‘." predcted
predicted PERS A ) selectbest | A
predictor

prediction of PBRs + estimated predictive performance {AUC)

Fig. 1. Flowchart of the PROBselect consensus predictor. Input and outputs are
denoted with italic font. Elements with solid boundaries were developed in this
article
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fair assessment that considers two important aspects of predictive
performance: ability to correctly predict PBRs and ability to differ-
entiate PPIs from interactions with the other ligands.

The results of the dataset-level evaluation of the nine predictors
(Table 1) are consistent with the previous reports (Zhang and
Kurgan, 2018, 2019). First, the most accurate predictors (AUC >
0.69) include SCRIBER, SSWRF and CRFPPI. Second, we note high
FPR and FCPR (false positive rate among residues that interact with
other ligands including nucleic acids and small molecules) values
relative to the sensitivity/TPR values. Table 1 includes the sensitivity
to FPR and sensitivity to FCPR rates inside the square brackets.
Values of the rates <1 mean that a given tool makes relatively more
false predictions than correct predictions. This is particularly trou-
bling for the rate with FCPR since it means that comparable or
larger rates of PBRs are predicted for the residues that bind other
ligands when compared with the residues that bind proteins. In
other words, predictors that have such rates indiscriminately predict
all types of binding residues, not just PBRs. Only SCRIBER secures
high FCPR rate equal 3.1. Three methods obtain rates between 1.3
and 1.5 (CRFPPI, SSWRF and LORIS) while the remaining tools
have rates at or below 1.1. These results are in agreement with the
findings in Zhang and Kurgan (2018), showing that majority of the
current methods substantially cross-predict other types of interac-
tions for PPIs. The main reason is that they have used training data-
sets that include only protein-binding proteins, without
consideration for inclusion of residues that interact with other types
of partners (Zhang and Kurgan, 2018).

3.2 Comparative analysis of protein-level predictions

We are the first to couple the traditionally done dataset-level assess-
ment with first-of-its-kind evaluation for individual proteins, which
is arguably the most common mode of use for these predictors. We
are motivated by a recent study that investigated quality of protein-
level predictions of intrinsic disorder, which produced several
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Fig. 2. Distributions of the per-protein predictive performance measured for the
nine representative predictors of PBRs on the benchmark dataset. Violin plots in (A)
show distributions of the per-protein AUC values where the thick vertical lines rep-
resent the first quartile, median (white dot) and third quartile, whiskers denote the
minimal and maximal values, and the black horizontal lines denote the dataset-level
AUC. (B) The distributions of the AUC (in yellow), sensitivity (blue), FPR (red) and
FCPR (green) values for the CRFPPI predictor that has highest median per-protein
AUCG; the vertical lines denote dataset-level values. The y-axis is the fraction of pro-
teins for a given AUC, FPR, FCPR or sensitivity value

practical and novel observations (Katuwawala et al., 2020a). The
raw distributions of the protein-level predictive performance are
shown in Supplementary Figure S1, with the corresponding violin
plots in Supplementary Figure S2. We report the median per-protein
values in Table 1 and we provide the key distributions in Figure 2.
For each measure, we evaluate significance of the differences in the
protein-level performance between the best-performing method and
the other eight predictors.

First, we observe that the overall performance quantified with
AUC varies widely across proteins for each of the nine predictors
(Fig. 2). For instance, while the dataset-level AUC of CRFPPI is
0.68, its per-protein AUC values range between 0.36 and 0.92, with
a long tail for the low values and the peak at around 0.75. This
means that while the users expect to receive predictions with AUC
below 0.7 (based on this and prior benchmarks), in fact they often
will be surprised with better results, but may also encounter very
poor predictions for some proteins (AUC < 0.5, which is below ran-
dom levels). Similarly, the protein-level sensitivity, FPR and FCPR
values vary widely between proteins (Fig. 2B for CRFPPL
Supplementary Fig. S2B—D for the other predictors). The most wor-
rying observation comes from comparing sensitivity and FCPR dis-
tributions. For several methods, including SPPIDER, PSIVER and
SPRINT, the majority of proteins have FCPR values larger than sen-
sitivity. That means that for these proteins they generate a larger
fraction of PBRs among residues that bind other ligands when com-
pared with the residues that in fact interact with proteins. We see
that in Table 1 where the median protein-level sensitivity to FCPR
rate for these methods is much below 1, i.e. 0.4 for SPRINT and
SPPIDER and 0.8 for PSIVER.

The overall best protein-level predictor is CRFPPI, with median
AUC = 0.706. The AUC values of the second best SSWRF are not
significantly different (P-value = 0.08, median AUC = 0.701), while
the improvements over the remaining seven predictors are statistical-
ly significant (P-value <0.001). The newest tool, DeepPPISP, secures
the highest sensitivity but at the expense of similarly high FPR and
FCPR, leading to a substantial over-prediction of PBRs. The more
informative protein-level sensitivity to FPR rate and sensitivity to
FCPR rate reveal a large advantage for SCRIBER. This method
secures the lowest FPR and FCPR values, and by far the highest sen-
sitivity to FPR and FCPR rates. The SCRIBER’s FPR and FCPR val-
ues are similar for both assessments, the protein- and dataset-level,
which is in contrast to all other predictors for which FCPRs are
much larger than FPRs. The latter demonstrates that the other eight
methods over-predict PBRs among residues that interact with other
ligands. This even includes the two overall-best methods, CRFPPI
and SSWREF, for which the sensitivity to FCPR rates equal 1.4 and
1.5, respectively. We observe that directly in Figure 2B where the
distribution of sensitivity values (blue line) is very close to the distri-
bution of FCPR values (green line) for CRFPPI; the distribution for
SSWREF is in Supplementary Figure S1. This suggests that while
CRFPPI and SSWRF accurately predict PBRs for proteins that inter-
act with protein partners (high AUC), they substantially cross-
predict PBRs for the proteins that bind other ligand types (low rate
to FCPR).

We further explore this important and often overlooked aspect
in Supplementary Figure S3. This figure directly compares the rate
of predicted PBRs between the 336 protein-binding proteins and the
112 proteins that bind other ligands (nucleic acids and small mole-
cules) from our benchmark dataset. The two rates are virtually iden-
tical for several predictors, including SPPIDER, PSIVER, SPRINT,
SPRINGS, LORIS and CRFPPI. This reveals that they are unable to
differentiate between these two distinct protein sets. We note a mar-
ginal increase in the rate of prediction of PBRs for the protein-
binding proteins for DeepPPISP and SSWREF. The only predictor for
which the rate of PBRs is substantially higher for protein-binding
proteins is SCRIBER. Overall, our analysis suggests that SCRIBER
is the only method that escapes the cross-prediction curse and can be
used to separate protein-binding proteins from proteins that interact
with other partner types. This is consistent with the premise of this
tool that was designed to reduce the cross-predictions (Zhang and
Kurgan, 2019).
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3.3 Complementarity of predictors of PBRs

The feasibility of the development of successful consensus predictors
is dependent on complementarity of the base/input methods (Peng
and Kurgan, 2012). Supplementary Figure S4 provides side-by-side
comparison of the per-protein AUC values for the top five protein-
level predictors from Table 1. The predictive performance for indi-
vidual proteins ranges broadly across different predictors. The figure
shows that the AUCs of the best-overall CRFPPI predictor are out-
performed for many proteins by one of more other methods.
Correspondingly, we measure the complementarity in two ways: (i)

mSSWRF » CRFPPI SCRIBER SPRINT DeepPPISP
LORIS uPSIVER mSPRINGS  mSPPIDER
A best AUC
best FPR

best FCPR

6% 10%
10% 9% 7%

18%

B number of predictors giving low-quality results
m) = 4 5 m6 m7 m8 m9
AUC<0.5
FPR>TPR
FCPR>TPR

1%

Fig. 3. The best and the worst protein-level predictions across the nine predictors.
(A) The fraction of proteins for which a given color-coded predictor secures the best
predictive quality quantified with AUC (outer ring) FPR (middle ring) and FCPR
(inner ring). (B) The fraction of proteins for which a given color-coded number of
methods provides excessively low predictive performance. Outer ring defines low
performance as AUC<0.5 (worse-than-random predictions). The middle ring
defines low performance as significant over-prediction: FPR > TPR (proteins with
the rate of correct PBR predictions below the rate of false positive predictions). The
inner ring defines bad predictions as significant cross-prediction: FCPR > TPR (pro-
teins with the rate of correct PBR predictions that is smaller than the rate of false
positives among residues that interact with the other ligands)

we investigate the ability of multiple methods to contribute high-
quality predictions and (ii) we quantify the size of the protein set for
which the consensus would not be able to provide good predictions.

First, we analyze whether the best predictions are primarily
attributed to a single method or whether they are generated by mul-
tiple methods, each performing favorably for a relatively large pro-
tein set (Fig. 3A). The consensus would benefit from the latter
scenario since appropriate selection of the best predictions across
multiple tools would lead to a solution that improves over the pre-
dictions generated by the single best-overall tool. The outer ring in
Figure 3A reveals that the largest set of proteins for which the same
method (SSWRF) provides the best results (highest AUC) constitutes
only 29% of the dataset. Interestingly, the optimal predictions for
73% of the proteins are generated by just three predictors: SSWRF,
CRFPPI and SCRIBER. The remaining six methods cover only 27%
of the proteins, with SPRING and SPPIDER producing the best
results for only 2 and 1% of the proteins, respectively. The middle
and inner rings in Figure 3A focus on the over-prediction (FPR) and
cross-prediction (FCPR) aspects. SCRIBER has a clear advantage, as
it produces predictions with the lowest FPR for 43% of proteins and
the lowest FCPR for 37% of proteins. Several other methods are
relatively evenly distributed but they cover no more that 20% each,
with the second best coverage at 18% for the best FPR at 15% for
the best FCPR for PSIVER.

Second, we analyze frequency of low-quality predictions across
the nine methods. We aim to estimate the size of a protein set that
cannot be accurately predicted with the current tools, and which
therefore could be solved by the consensus. Figure 3B shows fraction
of proteins for which a given color-coded number of methods pro-
vides low predictive performance. The outer ring focuses on proteins
for which AUC is below random levels (<0.5). About 25% of pro-
teins are predicted above random levels by all nine methods (dark
green) and 79% are predicted better-than-random by majority of
the methods (sum of all green fields). Moreover, each protein is pre-
dicted at the better-than-random level by at least one predictor, i.e.
the dark red field is at 0% and is absent in the outer ring. The mid-
dle and inner rings focus on the proteins that are significantly over-
predicted (FPR > TPR: proteins with the rate of correct PBR predic-
tions below the rate of false positives) and significantly over-cross-
predicted (FCPR > TPR: proteins with the rate of correct PBR pre-
dictions below the rate of false positives among residues that interact
with other ligands), respectively. Figure 3B reveals that majority of
the predictors does not significantly over-predict for 87% of pro-
teins (all green fields in the middle ring in Fig. 3B), and at least one
predictor does not significantly over-predict for each protein in the
dataset (dark red field is absent). The inner ring reveals the signifi-
cant impact of the wide-spread cross-predictions, i.e. only 21% of
proteins are never significantly over-cross-predicted and majority of
methods substantially over-cross-predicts 68% of proteins (sum of
all non-green fields). The one method that provides relief in this as-
pect is SCRIBER. Availability of this tool is the reason why only 6%
of proteins (dark red field) have this problem across all nine
predictors.

To sum up, multiple methods contribute the best protein-level
results and nearly all proteins can be predicted at better-than-
random levels. This suggests that an effective consensus could be
designed using current tools.

3.4 Estimation of predictive quality from protein

sequence

Table 1 reveals that several current methods, such as SPPIDER,
DeepPPISP, PSIVER and SPRINT, produce low quality results, i.e.
low AUC and high FCPR. Figure 2A reveals that the predictive per-
formance of the remaining methods varies widely across proteins,
whereas Figure 3A further shows that they produce favorable results
for distinct protein sets. We hypothesize that differences in the pre-
dictive performance of these well-performing methods is linked to
intrinsic characteristics of the input protein chains. Supplementary
Figure S5 shows relation between three example characteristics
extracted from the sequence (average hydrophobicity, fraction of
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Table 2. Comparison of predictive quality for the prediction of AUC values of the four accurate predictors of PBRs and PROBselect (Section

3.5) on the TEST dataset

Predictor SSWRF LORIS CRFPPI SPRINGS PROBselect Average
SVR models PCC 0.44 0.42 0.41 0.35 0.44 0.41
MAE 0.09 0.08 0.09 0.09 0.09 0.09
RMSE 0.12 0.11 0.11 0.11 0.11 0.11
Alignment with BLAST PCC 0.09 0.06 0.04 0.03 0.06 0.06
MAE 0.12 0.11 0.11 0.11 0.11 0.11
RMSE 0.15 0.14 0.15 0.14 0.14 0.15
Random predictor PCC -0.02 0.05 -0.03 0.02 0.01 0.01
MAE 0.13 0.12 0.12 0.12 0.12 0.12
RMSE 0.17 0.15 0.16 0.15 0.16 0.16

Notes: The support vector regression (SVR) model optimized using cross-validation on the TRAINING set is compared against an alignment approach and a

baseline random predictor. We report Pearson’s correlation coefficient (PCC), mean absolute error (MAE) and root mean squared error (RMSE). The results in

bold font are the best for a given measure. The last column is average over the five methods.

negatively charged residues and average propensity for protein-
binding) and the AUC of the best-performing CRFPPI method. The
hydrophobicity and propensity for protein binding are positively
correlated with AUC of this predictor (PCC = 0.32 and 0.21, re-
spectively) while the amount of negatively charged amino acids is
negatively correlated (PCC = —0.33). These results suggest presence
of a relation between the input protein chain and the predictive per-
formance. Such relation could be used to estimate predictive per-
formance of a given method directly from the sequence. Our
hypothesis is also supported by a recent study that models these rela-
tions in the context of intrinsic disorder predictions (Katuwawala
et al., 2020b).

We use 65 biophysical and structural features relevant to PPIs
that are computed directly from the sequence. We model relation be-
tween these features and the AUCs using regression. We parame-
trized and selected a well-performing model that relies on support
vector regression (SVR) using cross-validation on the TRAINING
dataset; see Section 2 for details. Here, we assess performance of
this model on the independent (low similarity) TEST set for the four
well-performing predictors: SSWRF, CRFPPL, LORIS and SPRINGS
(Table 2). We compare the SVR models to a current alternative that
uses sequence alignment with the popular BLAST (Altschul ez al.,
1997; Hu and Kurgan, 2019), i.e. the AUCs of the most similar
training proteins found with alignment are used as the prediction.
We also compare against a random predictor that shuffles the actual
AUC values obtained for the test proteins by a given predictor of
PBRs—this way it predicts the correct distribution of the AUC
values.

Table 2 shows that the SVR models produce accurate estimates
of the predictive performance for the four predictors of PBRs, which
are consistent with the cross-validation results on the TRAINING
dataset (Supplementary Table S4). The average (over the four mod-
els) PCC = 0.41 and the average MAE = 0.09. These results are sig-
nificantly better than the predictive performance offered by the two
alternatives (P-value <0.01), where the average (over the four mod-
els) PCC <0.06 and the average MAE > 0.11.

Next, we use the results produced by the SVR models in a prac-
tical context to identify well-predicted proteins. First, based on the
results from Table 1 and Figure 3A, which suggests that the four
methods for which we produced SVR models significantly cross-
predict PBRs, we use SCRIBER to identify proteins that do not inter-
act with proteins. These proteins are poorly predicted (due to cross-
prediction) by these four tools. We use a simple filter to identify
these problematic proteins, i.e. a given protein is assumed not to
bind proteins if SCRIBER’s prediction includes a negligible amount
of putative PBRs, i.e. the fraction of predicted PBRs <0.015, which
corresponds to the expected SCRIBER’s FPR that was published in
Zhang and Kurgan (2019). We replace the prediction generated by a
given predictor (SSWRF, CRFPPI, LORIS and SPRINGS) with the
SCRIBER’s prediction for these proteins. The effect of this filter can
be quantified by comparing the ‘entire dataset with no SCRIBER’
and ‘entire dataset no SCRIBER’ points in Figure 4. The dataset-

% SSWHF (sorted by putative AUC, with SCRIEER)
GCRFPPI (sorted by putalive AUGC, wilh SCRIBER)
+LORIS [soned by putative ALIC, with SCRIBER) BLORIS (whole data: o SCRIBER)
SPRINGS (sorled by pulative ALIC, with SCRIEER] BSPRINGS (whaole datase!, no SCRIBER)
aPROSselect (sorted by putative AUC, with SCRIBER) ePROBselect (whole dataset, no SCRIBER)
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Fig. 4. The dataset-level AUCs for subsets of the test proteins sorted based on their
putative AUCs generated by the SVR models. We consider subsets of test proteins
for which the predicted AUCs are above a given percentile of all estimated AUCs,
i.e. ‘top 10%” corresponds the test proteins that have AUCs above the 90th percent-
ile of the predicted AUCs. The two right-most points are the result on the complete
TEST set where the ‘Entire dataset’ denotes the results of a given predictor on the
complete test set with the use of the SCRIBER-based filter; ‘no SCRIBER’ are the
results without the filter. Dotted lines are linear fit into the measured data

level AUC for CRFPPI increases from 0.69 to 0.72, for CRFPPI
from 0.69 to 0.72, for LORIS from 0.65 to 0.67, and for SPRINGS
from 0.62 to 0.65. Second, we sort proteins based on their corre-
sponding SVR-predicted AUC values and we compare their actual
dataset-level AUCs (Fig. 4). The points on the left side of Figure 4
corresponds to the subsets of the test proteins with progressively
higher values of predicted AUC. We note a consistent trend (across
the four methods) where proteins with higher putative AUCs are in
fact predicted better. The left-most point reveals that the 10% of
proteins in the TEST set identified by the SVR models as the most
accurately predicted have in fact substantially higher AUC when
compared with the overall AUC on the complete dataset. For
CRFPPI, these proteins are predicted by with AUC = 0.74 compared
with the overall AUC = 0.69. We observe similar differences for the
other three predictors: 0.71 (top 10%) compared with 0.62 (com-
plete dataset) for SPRINGS, 0.70 — 0.65 for LORIS, and 0.75 — 0.69
for SSWREF. Overall, we show that the four SVR models can be used
to accurately identify well-predicted proteins.

3.5 Consensus prediction of PBRs

We show that only a few methods secure high AUC values and that
they predict well for different protein sets (Table 1; Fig. 3A). We
found that SCRIBER effectively identifies proteins that do not have
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Table 3. Average and median per-protein rank of the quality of predictions produced by the nine predictors of PBRs, the PROBselect consen-
sus and the oracle predictor that always select the best prediction among the available nine predictors on the TEST dataset

Methods Oracle PROBselect CRFPPI SSWRF SCRIBER LORIS SPRINGS PSIVER  SPRINT  DeepPPISP  SPPIDER
Average rank 1.0 3.4 4.1 4.3 5.4 5.4 6.5 7.2 7.6 8.1 9.1
Median rank 1 3 4 4 6 N 7 8 8 9 10
Note: Lower rank is better.

PBRs for which the other predictors suffer heavy cross-predictions - sensitivity
(Table 1; Fig. 4). Finally, we developed SVR models that use protein AL_J_C AUC = Sensitivity to FCPR rate I[FCPR
sequence to accurately estimate predictive performance of the well- i 1 f; 1
performing methods. These findings motivate the design of our con- I3

sensus approach that applies the dynamic classifier selection ap-
proach (Cruz et al., 2018). Our PROBselect consensus (Fig. 1)
works in three steps: (i) apply SVR models to predict AUCs of
the two most accurate (and statistically not different) predictors:
SSWRF and CRFPPL (ii) generate predictions of PBRs with
SCRIBER and (iii) dynamically select the optimal predictor as fol-
lows: use SCRIBER’s prediction if it identifies that the input protein
does not have PBRs; otherwise use the predictor (SSWRF or
CRFPPI) that secures higher SVR-predicted AUC. A unique advan-
tage of our solution is the provision of the estimated AUC value that
can be used to gauge the quality of the associated prediction.

We compare the PROBselect’s predictive performance against its
base methods (SSWRF and CRFPPI, which significantly outperform
the other seven methods; Table 1) and two implementations of trad-
itional consensuses on the TEST dataset (Fig. 5). The traditional
consensuses, which are popular in related protein bioinformatics
areas, combine residue-level predictions generated by multiple pre-
dictors (Fan and Kurgan, 2014; Puton et al., 2012; Yan et al.,
2016). We implemented the traditional consensus that combines
two base method (SSWRF and CRFPPI) and the consensus that com-
bines the nine predictors of PBRs. PROBselect secures the highest
AUC = 0.720 =0.006 (Fig. 5), and outperforms the second best
classical consensus with nine predictors (AUC = 0.704 = 0.004; P-
value <0.001) and the best base predictor, SSWRF (AUC =
0.691 = 0.007; P-value <0.001). The ROC curves are shown in
Supplementary Figure S6. The improvements offered by PROBselect
in the sensitivity to FCPR rate, which quantifies ability to handle
cross-predictions (we further explain this rate in Section 3.1), are
also statistically significant (P-value <0.001). PROBselect secures
rate = 1.98 + 0.02 compared with the second best CRFPPI with rate
= 1.46 = 0.04. The traditional consensus with nine predictors,
which obtains the second highest AUC, has much lower rate of
1.31+0.02.

In the spirit of the protein-level assessment theme of our article,
we further assess PROBselect based on protein-level ranking of the
quality of the predictions that it produces, relative to the quality of
the predictions produced the nine currently available predictors
(Table 3). We also include the oracle method that always select the
most accurate results among all predictors. We rank quality of
results produced by these 11 approaches for each protein, from best
to worst, and we compare the average and median ranks across the
proteins in the TEST set. The oracle is by default always the best
and thus it secures rank of 1. The PROBselect obtains the second
best rank at 3.4 (average) and 3 (median), which is substantially bet-
ter than the third-best CRFPPI with 4.1 (average) and 4 (median)
rank. This means that PROBselect’s predictions are expected to out-
perform results generated by the other predictors when applied at
the protein level.

We develop the SVR-based model that predicts AUC of the
PROBselect from the input protein chain (details in Section 3.4).
Table 2 shows that this models accurately estimates the predictive
performance of PROBselect, with PCC = 0.44 and MAE = 0.09.
These values are comparable to the results on the training dataset
(Supplementary Table S4) and to the SVR models for SSWRF and
LORIS, and are significantly better than the alignment and random
predictor (P-value <0.01). Moreover, Figure 4 shows that the use of
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Fig. 5. Comparison of predictive performance of the PROBselect consensus with
two traditional consensuses that apply the two best (SSWRF and CRFPPI) and the
nine predictors of PBRs, and the performance of SSWRF and CRFPPI—the two base
methods used in PROBselect. We bootstrap the predictions (10 repetitions of 80%
of proteins from the TEST dataset) and we assess significance of the differences in
the AUC and sensitivity to FPCR rate values between the PROBselect and the other
four methods using paired #-test; the measured data are normal based on the
Kolmogorov—Smirnov test. The bars represent averages of the 10 results; whiskers
show the standard deviations

SCRIBER as a filter for PROBselect results in a substantial increase
in AUC. The dataset-level AUC increases from 0.69 (‘no SCRIBER”)
to 0.72 (‘with SCRIBER’). This figure also reveals that proteins with
higher SVR-predicted AUCs are in fact predicted better by
PROBselect. The left-most point shows that the 10% of the test
proteins that the SVR models predicts as the most accurate secure
AUC = 0.76. Furthermore, the linear trend for the PROBselect’s
SVR model is better/above than the corresponding trends for the
current predictors.

3.6 PROBselect webserver

A webserver the implements PROBselect is freely available at http://
bioinformatics.csu.edu.cn/PROBselect/home/index. It allows for
batch prediction of up to 5 FASTA-formatted protein chains. It
requires about 1 min to predict an average-length sequence. Upon
completion of the predictions, it sends link to the results to the user-
provided email address. The output includes the prediction from
SCRIBER, the estimated AUCs for SSWRF and CRFPPI, and the
link to the webserver of the recommended predictor, i.e. the predict-
or that secures the highest predicted AUC. The results are available
via a private HTML page (the URL is sent by the email) and via a
parsable comma-separated text file with results.

4 Summary and conclusions

We perform first-of-its-kind comparative evaluation of the predict-
ive performance of nine representative predictors of PBRs that
focuses on the protein-level results. We find that the overall per-
formance quantified with AUC varies widely across proteins, rang-
ing from near-random or sub-random levels to very strong
predictions, with AUC > 0.9 achieved by SSWRF and CRFPPI meth-
ods (Fig. 2A). The overall two best-performing predictors, CRFPPI
and SSWRE, secure the median per-protein AUC of 0.70. While
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their predictive quality is statistically equivalent, they outperform
the other current methods by a statistically significant margin.

We confirm conclusions from the recent reports (Zhang and
Kurgan, 2018, 2019), which show that virtually all current predic-
tors suffer substantial amounts of cross-predictions. This means that
they often mis-predict residues that interact with nucleic acids and
small molecules as PBRs. We show that for some methods, including
SPPIDER, PSIVER and SPRINT, their rate of protein-level cross-
predictions is higher than the rate of correct PBR predictions. Even
the two best-overall predictors (CRFPPI and SSWRF) cross-predict
at the 1:1.4 (for CRFPPI) and 1:1.5 (for SSWRF) rate, i.e. one cross-
predicted residue for 1 correctly predicted PBR. The only method
that successfully avoids the cross-prediction curse is SCRIBER, which
secures median protein-level AUC = 0.64 while reducing the median
amount of cross-predictions to zero. This suggests that SCRIBER can
be used to accurately identify proteins that do not interact with pro-
teins but which may interact with other partner types.

Our empirical analysis reveals that the predictive performance of
the few well-performing predictors (CRFPPL, SSWRF, SPRINGS and
LORIS) varies widely across proteins while producing favorable
results for distinct protein sets. This suggests that the performance
can be (at least partially) determined from the protein sequence. We
designed and empirically tested SVR-based models that accurately
estimate AUC of the above four methods and PROBselect from the
sequence. Subsequently, we designed and empirically tested a novel
consensus predictor of PBRs, PROBselect, which relies on these SVR
models and the ability of SCRIBER to identify the proteins that do
not interact with proteins. We demonstrate that our novel consensus
design, which relies on the dynamic classifier selection approach,
outperforms its base predictors and traditionally designed consen-
suses by a statistically significant margin. An important and unique
advantage of PROBselect is the availability of the estimated AUC
value that accompanies the prediction of PBRs and which informs
the users about the expected predictive quality of this prediction.
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